![](assets/云创动力LOGO-横版(小) 副本.png) ![](assets/PPT_kaifamiao_logo 副本1.png)
本文内容是对空间复杂度的梳理和总结,本文内容包括:
简单的说就是程序运行所需要的存储空间。
一个算法的空间复杂度,也常用大 O 记法表示。
要知道每一个算法所编写的程序,运行过程中都需要占用大小不等的存储空间,算法的存储量包括:
首先,程序自身所占用的存储空间取决于其包含的代码量,如果要压缩这部分存储空间,就要求我们在实现功能的同时,尽可能编写足够短的代码。
其次,程序运行过程中输入输出的数据,往往由要解决的问题而定,即便所用算法不同,程序输入输出所占用的存储空间也是相近的。
事实上,对算法的空间复杂度影响最大的,往往是程序运行过程中所申请的临时存储空间。不同的算法所编写出的程序,其运行时申请的临时存储空间通常会有较大不同。
举个例子:
Scanner scanner = new Scanner(System.in)
int n;
n = scanner.nextInt();
int a[10];
通过分析不难看出,这段程序在运行时所申请的临时空间,并不随 n 的值而变化。而如果将第 4 行代码改为:
int a[n];
此时,程序运行所申请的临时空间,和 n 值有直接的关联。
写代码我们可以用时间换空间,也可以用空间换时间。加大空间消耗来换取运行时间的缩短,加大时间的消耗换取空间,我们一般选择空间换时间。一般说复杂度是指时间复杂度。
powered by kaifamiao